Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(19): 14194-14204, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713135

RESUMO

Constructing Z-scheme heterojunctions incorporating an exquisite hollow structure is an effective performance regulation strategy for the realization of high quantum efficiency and a strong redox ability over photocatalysts. Herein, we report the delicate design and preparation of a core-shell hollow CdS@CoTiO3 Z-scheme heterojunction with a CdS nanoparticle (NP)-constructed outer shell supported on a CoTiO3 nanorod (NR) inner shell. The in situ growth synthetic method led to a tightly connected interface for the heterojunction between CdS and CoTiO3, which shortened the transport distance of photoinduced charges from the interface to the surface. The promoted charge carrier separation efficiency and the retained strong redox capacity caused by the Z-scheme photoinduced charge-transfer mechanism were mainly responsible for the boosted photocatalytic performance. Additionally, the well-designed core-shell structure afforded a larger interfacial area by the multiple direction contact between CdS and CoTiO3, ensuring sufficient channels for efficient charge transfer, and thus further boosting the photocatalytic activity. As an efficient photocatalyst, the optimized CdS@CoTiO3 nanohybrids displayed excellent 2,4-dichlorophenol (2,4-DCP) and tetracycline (TC) degradation efficiencies of 91.3% and 91.8%, respectively. This study presents a Z-scheme heterojunction based on ecofriendly CoTiO3, which could be valuable for the development of metal perovskite photocatalysts for application in environmental remediation, and also demonstrated the tremendous potential of integrating a Z-scheme heterojunction with the morphology design of photocatalyts.

2.
Nanotechnology ; 21(49): 495602, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21071820

RESUMO

One-pot hydrothermal process has been developed to synthesize uniform Te@phenol formaldehyde resin core-shell nanowires with unique fluorescent properties. A synergistic soft-hard template mechanism has been proposed to explain the formation of the core-shell nanowires. The Te@phenol formaldehyde resin core-shell nanowires display unique fluorescent properties, which give strong luminescent emission in the blue-violet and green regions with excitation wavelengths of 270 nm and 402 nm, respectively.


Assuntos
Materiais Biocompatíveis/síntese química , Formaldeído/síntese química , Nanotecnologia/métodos , Nanofios/química , Tamanho da Partícula , Fenóis/síntese química , Polímeros/síntese química , Materiais Biocompatíveis/química , Sobrevivência Celular , Células HeLa , Humanos , Microscopia de Fluorescência , Nanopartículas/química , Nanofios/ultraestrutura , Espectroscopia Fotoeletrônica , Telúrio , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...